ЛАПЛА́СА ПЕРАЎТВАРЭ́ННЕ,
лінейнае функцыянальнае пераўтварэнне, якое пераводзіць функцыю f(t) сапраўднай пераменнай t (арыгінал) у функцыю F(s) камплекснай пераменнай (вобраз). Цесна звязана з Фур’ё пераўтварэннем. Выкарыстоўваецца для інтэгравання дыферэнцыяльных ураўненняў у задачах электратэхнікі, гідрадынамікі, механікі, тэорыі цеплаправоднасці.
Дазваляе зводзіць рашэнне, напр., звычайнага лінейнага дыферэнцыяльнага ўраўнення з пастаяннымі каэфіцыентамі да рашэння алг. ўраўнення 1-й ступені. Аднабаковае Л.п. матэматычна выражаецца праз інтэграл Лапласа
(інтэгралы такога віду разглядаліся П.С.Лапласам у працах па тэорыі імавернасцей у 1812, адсюль назва) Пры пэўных абмежаваннях на функцыю F(s) функцыя f(t) узнаўляецца адназначна па формулах абарачэння. Л.п. разам з яго абарачэннем складае аснову аперацыйнага злічэння.
А.А.Гусак.
т. 9, с. 134
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)